

NOTIFICATIONS API

Nerddy

About the API
The notifications API, also known as output API, allows apps to send output,

content, suggestions, warnings, and normal notifications to users.

Authentication
• Requires appid and accesskey.

• Some features require platform granted permission.

Limitations
• Notifications can’t include JavaScript unless granted platform permission.

• Each notification type should be used within the scope of its stated purposes.

• Links in notifications should open in a new tab. Users should not be redirected

away from Nerddy at any point.

• Notifications may not include conflicting CSS. Notifications may not alter

Nerddy’s design or make modifications to the layout.

• Notifications may not include PHP code.

• Notifications may not trick the users to install malware or send the user to

malicious pages.

• Notifications may not be used to gather credit/debit card data unless granted a

special permission in writing.

• Notifications may not contain advertisements in violation of Nerddy’s

monetization guidelines.

API URL
http://www.nerddy.com/beta/notification/v1

Supported Methods
POST

Request Format
Here is a sample request body:
{"appid":"xxxx", "accesskey":"xxxx",

"requestid":"xxxx","design":"x","recipient":"xxxx","sessionid":"xxxx","queryid":"xxxx","title":"xxxx","tagline":"

xxxx","showsavebutton":"x","allowsharing":"x","allowpowerbutton":"x","notificationbody":"<contains-html>

Here could be any content or Nerddy mark-up </br><center> <iframe width="900" height="600"

src="https://www.youtube.com/embed/zz4bfDgtc8M" frameborder="0"></iframe></center> </contains-

html>"}

appid* Your app’s parent (global) app ID

accesskey* Your parent app’s access key

requestid* A random integer (required for reference)

design* Specify the design type of notification.
Different types are explained in the types of
notifications section. Design can be “output” or
“content” or “sidebar” or “normal” or “bar”

recipient* The ID of the user that the notification is sent
to (varchar)

sessionid The ID of the session on Nerddy where the
user made the request. This could easily be
accessed in the API communication stage if you
specify #!usersessionid!# under return in input
processing instructions. Sessionid is required
for session saving to be enabled for your app.
Session saving allows users to retrieve sessions
they accessed earlier. If you wish to make an
output notification irretrievable, don’t specify
a sessionid parameter.

queryid Required for output type notifications. Specify
the ID of the original user query. This could
easily be accessed in the API communication
stage if you specify #!userqueryid!# under
return in input processing instructions.

title* Required for all notification types. Title will be
displayed to user in normal, sidebar, and bar
notifications. For output and content
notifications, a fixed title may be used or you
may specify the original query.

tagline* Required for all notification types. Tagline will
be displayed to the user before the semicolon
and title in normal and sidebar notifications.
For normal and sidebar notifications, the
recommended tagline is the title of your
application. For bar type, the tagline is the text

the user clicks to open the notification. For
output and content notifications, use the title
of your application as the tagline.

showsavebutton Can be “yes” or “no”. If showsavebutton is yes,
Nerddy will show a save button that allows the
user to save the notification for future access.

allowsharing Can be “yes” or “no”. If allowsharing is yes,
Nerddy will show a sharing button that allows
the user to create a share link that they could
share with other users to share the notification
content.

allowpowerbutton Can be “yes” or “no”. If allowpowerbutton is
yes, Nerddy will show a button that when
clicked by the user, the content of the
notification will automatically be shared to
other Nerddy users who may be interested.
These users may or may not have a connection
with the original user who clicked the power
button.

notificationbody* This is the content of the notification. Content
MUST be placed between <contains-html>
</contains-html> tags even if it doesn’t contain
HTML. Notification body may contain Nerddy
mark-up which is presented in the Nerddy
mark-up section in this manual. Body may not
contain JavaScript unless permission is
granted. It may contain HTML and CSS. No
special encoding is required.

Response Format
The response will return the status of the request.

{"requestid":"xxxx","result":"success","error":null}

Types of Notifications
There are different types of notifications on Nerddy as shown below.

Type Uses and Limitations

output The content of the notification will be
displayed directly to the user. A sample
output notification is shown in Figure 1
in the appendix. This type of
notification should only be used to
return output to a user in response to a
request or intent. Output notifications
are not delivered to offline users.

content Similar to output notifications, the
content of the notification will be
displayed directly to the user. Content
notifications may be sent to offline
users. Such notification type is ideal for
delivering articles the user expressed
interest in, notifications that are
important for a limited time such as
notification of completion of a file
conversion or video processing, and
reminders. Content notifications may
not be sent to users who had never
used your app and may not contain
auto-playing video or GIFs. They may
not be used to market or sell affiliate
products.

normal Normal notifications are normal
notifications. However, on Nerddy,
normal notifications are meant to be
used for important information. Normal
notifications are the user’s “inbox” and
may not be used to remind the user to
use your app or buy your product.

sidebar Sidebar notifications show under
Interesting in the side menu and are

meant to allow apps to reach new users
and deliver content to users who may
be interested. Apps may use the User
Search API to find users who may be
interested. You may not use sidebar
notifications to send content to
untargeted users. The content in
sidebar notifications loads only when
the notification is clicked. Apps that
receive a relatively low click-to-
notifications ratio will be flagged for
review. You may not send “too many”
notifications to the same users on one
day.

bar Bar notifications show up as a bar on
the top of the page as shown in the
example (Figure 2) in the appendix. Bar
notifications may be used to send
requests that require urgent action
from the user when the user is known
to be online. They may also be used to
offer extra content such as offering
hotel search results in addition to the
requested flight search results.

Notification Body Markup
 Nerddy markup allows apps to create interactive interfaces within notifications.

There are many cases where you may need to use Nerddy markup in notifications.

For instance, you may need to load pre-defined output to a user when an element

such as some text or image is clicked. You may need to send an API request to a

page on your website with dynamic payload when some text or image is clicked.

Nerddy markup also allows your application to receive form data, create image

albums, and paginate content.

Load new pre-defined content when a
marked text/image is clicked.

Marking tags :
 <NNB[i]></NNB[i]>

#Use marking tags to define clickable text.

Content tags:
<NerddyNewBox[i]></NerddyNewBox[i]>

#Use content tags to define content to be
shown when marked text is clicked.

Sub (nested content) marking tags:
<NNB[i][b]></NNB[i][b]>

#Use nested content marking tags to define
clickable text that is contained in data under
content tags.

Sub content (nested content) tags:
<NerddyNewBox[i][b]>
</NerddyNewBox[i][b]>

#Use nested content tags to define content to
be shown when the associated nested
content marking tag is clicked.

• Only one level of nesting is supported.
Content tags must be placed at the end of the
level as shown in the implementation.

• [i] must start with [1] and increase by
increments of 1 for other boxes at the same
level relative to parent. The same applies for
[b].
http://www.example.com</DRURL[2][1]>

Implementation:
"notificationbody":"<contains-
html><NNB[1]>Click here</NNB[1]> for more
information. <NNB[2]>Click here</NNB[2]> for
photos.
<NerddyNewBox[1]>
French fries are delicious. To learn about French
fries history <NNB[1][1]>click this</NNB[1][1]>.

 To view some recipes click
<NNB[1][2]>here</NNB[1][2]>.
<NerddyNewBox[1][1]>French fries history. //No
more levels of nesting
allowed.</NerddyNewBox[1][1]>
<NerddyNewBox[1][2]>French Fries recipes.
HTML. CSS. Nerddy Code.</NerddyNewBox[1][2]>
</NerddyNewBox[1]>
<NerddyNewBox[2]>
<nrdalbum>http://www.example.com/1.jpg,
http://www.example.com/2.jpg</nrdalbum>
<div class=”clear2”></div>
<DR[2][1]>Click here</DR[2][1]> to order
<DataRequest[2][1]><DRURL[2][1]>
{"key"="123456", "item"="12386",
"type"="sides"}</DataRequest[2][1]>
</NerddyNewBox[2]></contains-html>"

Send a request to third party server with
defined payload when a text/image is clicked

Marking tags:
<DR[i]></DR[i]>

#Use marking tags to define clickable text.

Payload tags:
Payload container tags:
<DataRequest[i]></DataRequest[i]>
API URL must be given under
<DRURL[i]></DRURL[i]> tags inside the
container before payload data is defined.
Payload data must be in JSON. See
implementation.

When marked text/image is clicked, data will
be sent to associated DRURL in this format:
{"auth":"vericode":"xxxx","appid":"xxxx","requestid":
"xxxx","userip":"x.x.x.x","userid":"xxxx"},"body":{"oni
on"="1234", "item"="12398","type"="roasted"}}

Method: POST

Implementation:
"notificationbody":"<contains-html><DR[1]>Click
here</DR[1]> to order a potato. <DR[2]>Click
this</DR[2]> to order a roasted onion.
<DataRequest[1]><DRURL[1]>
http://www.example.com/api.php</DRURL[1]>
{"item"="12386",
"type"="cheesy"}</DataRequest[1]>
<DataRequest[2]><DRURL[2]>
http://www.example.com/abc.php</DRURL[2]>
{"onion"="1234", "item"="12398",
"type"="roasted"}</DataRequest[2]>
</contains-html>"

Receive form data to an action URL

Same as HTML. Simply specify your API’s URL
as the form action URL.

Method: POST

• Forms can be included under main content
and under subcontent (NerddyNewBox).
• Forms can be paginated using the
pagination tags.

Format form data is sent to the action URL:

Implementation:
"notificationbody":"<contains-html><form
action=
"http://www.example.com/receiveformdata.php"
> First name:
 <input type="text"
name="firstname" value="Mickey">
 Last
name:
 <input type="text" name="lastname"
value="Mouse">

 <input type="submit"
value="Submit"> </form></contains-html>"

{"auth":{"vericode":"xxxx","appid":"xxxx","requestid":
"xxxx","userip":"x.x.x.x","userid":"xxxx"},
"body":{"firstname":"Steve","lastname":"Jobs"}}

Authentication information will always be
included. Please verify that the vericode and
app id are authentic. We further recommend
that you verify that the requestid is valid for
the userid.

Display images in an image gallery

Tags: <nrdalbum></nrdalbum>

• Must separate image URLs using commas.
• Images are paginated automatically.
• Image galleries can be included under main
content and under subcontent
(NerddyNewBox).

Implementation:
"notificationbody":"<contains-html>
<nrdalbum>http://www.example.com/image1.jpg
, http://www.example.org/sample.png,
http://www.example.net/cat.jpg</nrdalbum>
</contains-html>"

Paginate content

Tags: <page[i]></page[i]>

• Pagination tags can be included under main
content or nested content.
• Pagination tags don’t work with nrdalbum.

Implementation:
"notificationbody":"<contains-html>
<page[1]>Hello</page[1]><page[2]>Hi this is
page 2
<img
src="http://www.example.com"></page[2]>
</contains-html>"

Display user list

Tags: <nrduser></nrduser>
• This feature displays an interactive list of
users.
• Feature is only available to apps that use the
Profiles API. Please read the Profiles API
documentation first.
• Content under onlistsummary for each user
in the list will be shown.
• Must separate userids using commas.

Implementation:
"notificationbody":"<contains-html>
<nrduser>724607209309728,8279861767812,467
268716782197,3816876729807817,17618927819
26289827</nrduser>
</contains-html>"

• When a user is clicked, their Nerddy avatar,
full name, username, and profilebody stored
by your app for the user through the Profiles
API will be displayed.
• User list is automatically paginated. Ten
users per page will be shown.

Return the list of threads/conversations
between the notification recipient and
another defined user

Tags: <nrdthreads> userID</nrdthreads>

• Returns list of conversations between two
users. When a conversation is clicked, the
associated message room will load.

Implementation:
"notificationbody":"<contains-html>
<nrdthreads>849750854795943865</nrdthreads>
</contains-html>"

Where first user is the notification recipient and
second user is 849750854795943865

Show a new conversation button to allow the
notification recipient to start a conversation
with a defined user

Tags: <nrdnewthread>
userID</nrdnewthread>

• Returns a “New Thread” button on the top
right of the content container. When that
button is clicked, the notification recipient will
be asked to give the conversation a title and a
new message room will be created for the
notification recipient and the user defined
under the notification tag.

Implementation:
"notificationbody":"<contains-html>
<nrdnewthread>849750854795943865</nrdnewt
hread>
</contains-html>"

Where 849750854795943865 is the ID of the

defined user

Show a specific conversation by thread ID

Tags: <nrdconversation>
threadID</nrdconversation>

• Returns an existing message room by thread
ID.
• Thread ID should be given between the tags.

Implementation:
"notificationbody":"<contains-html>
<nrdconversation>5f6c57574585643634ff332478
</nrdconversation >
</contains-html>"

Messages API

About the API
Messages API allows apps to start app-to-user conversations with a particular

user. The most common use of the Messages API is asking the user for

information they didn’t provide in the query. Did you know that Nerddy offers a

natural language processing API that is built especially for the messaging system?

Authentication
• Requires appid and accesskey.

• Requires platform granted permission.

Limitations
• This feature should NOT be used to advertise services to users without user

initiation. The system is closely monitored.

API URL
http://www.nerddy.com/beta/messagesapi/v1

Supported Methods
POST

Request Format
Here is a sample request body:
{"appid":"xxxx","accesskey":"xxxx",

"requestid":"xxxx","userid":"xxxx","threadid":"xxxx","messageid":"xxxx","conversationtype":"x"

,"threadtitle":"xxxx","messagecontent":"xxxx","attachedfiles":"xxxx"}

appid Your app’s parent (global) app ID.

accesskey Your parent app’s access key.

requestid A random integer (required for reference).

userid The ID of the user (varchar).

threadid Specify the ID of the

thread/conversation/message room that the
message should be sent to. This can be an
existing room or a new one. The value should
be a varchar longer than 20 characters.

messageid A varchar ID for the message for reference.
The value should be 20 characters or longer.

conversationtype Integer. The only supported value currently is
2. If specified otherwise, you’ll not be able to
receive a response from the user.

threadtitle Title of the conversation room. This will be
shown to the user.

messagecontent The content of your message. Currently, this
can only be plain text. No HTML or Nerddy
Markup.

attachedfiles Comma-separated values to the URLs where
the files could be directly accessed.

A Sample App-to-User Conversation

Important Notes:
• When you initiate a conversation with a user, Nerddy will not send the

conversation room to the user. After you send the first message, you should use

the Notifications API to send the conversation to the user by thread ID. Don’t do

that every time you send a message to the user in the same conversation.

• Users can access the conversations at any time. You may need to set an expiry

flag on your end for the thread if you wish to end the conversation. For some

applications, it doesn’t make sense to end the conversation. For example, if you

are selling pizzas, it’s a good idea to keep the conversation alive so that the user

could return back to it at any time and re-order the pizza.

Receiving Messages from Users
To receive messages from users, you have to first set an end-point to which

messages should be sent. To do this, please refer to the dev commands table in

the developer’s manual.

Nerddy will send user messages to your end-point in this format:

{"appid":"xxxx", "vericode":"xxxx","requestid":"xxxx",

"userid":"xxxx","threadid":"xxxx","messageid":"xxxx","threadtitle":"xxxx","messagecontent":"x

xxx","attachedfiles":"xxxx"}

vericode The vericode generated for your app upon
registration. Refer to the developer manual for
how to know the vericode associated with your
app.

appid Your app’s parent (global) app ID.

requestid A random integer.

userid The ID of the user that sent the message.

threadid The ID of the thread/conversation room where the
message was sent.

messageid The ID of the message sent by the user on Nerddy
(varchar).

threadtitle Title of the conversation room.

messagecontent The text content of the message sent by the user.

attachedfiles Comma-separated values to the URLs where
the files attached by the user could be directly
accessed for 10 minutes.

We recommend that you use Nerddy NLP API to analyze the messagecontent sent

to you by the user. Nerddy NLP recognizes many types of entities and can relate

different messages.

Appendix

Figure 1: Sample Output Notification

Figure 2: Sample Bar Notification

