

DEVELOPER MANUAL

Nerddy

1

Contents
What is Nerddy? ... 2

Flow of Events ... 3

APIs that Apps Can Access .. 4

Building a Nerddy App .. 5

Types of apps on Nerddy .. 5

App Creation Checklist .. 5

Dev Commands ... 6

Components of a .nrd App File ... 8

appid* ... 8

owner* .. 9

about* ... 9

permissions* ... 10

sessionlock .. 11

interpretation* .. 12

analysis .. 14

input-processing* ... 19

api.. 21

request-and-read .. 21

request-only .. 22

output-processing ... 22

Interpretation and Analysis Examples .. 26

Special Guidelines and Tips ... 27

2

What is Nerddy?
Nerddy is a platform that offers end-users a new and easy way to access information and

perform operations on the Internet through natural language. It combines a powerful

command-line interface and a graphical user interface on one page. Nerddy connects users and

web applications on one page and provides APIs to these web applications to allow them to

handle queries and deliver output to users. Nerddy uses a sophisticated query interpretation

system and allows for dynamic, robust queries. Users are not required to install apps because

Nerddy can recognize what apps can handle a query based on instructions registered on the

system by the apps. Anyone can create a public app on Nerddy. Apps are instructions that tell

Nerddy how to recognize and handle queries. In return, Nerddy dedicates a significant portion

of revenue to applications through the rev share program in addition to allowing and facilitating

different forms of monetization. Below are sample queries that a user might make.

Please refer to the end-user manual for more details on what Nerddy is.

3

Flow of Events
The figure below describes the flow of events on Nerddy beginning from when an end-user

submits a query.

Figure 1: Flow of Events

The purpose of each stage is described in the table below.

Query Queries are the text input entered by the user to
complete an action or get information. Queries may
contain attached files.

Input Interpretation The stage where Nerddy looks for recognized
applications on the platform that could handle the
query. Input interpretation relies on five different types
of keywords, query length, entity recognition, and
attached files.

Input Analysis The stage where data and entities are extracted from a
query referring to critical word based instructions.
Critical words are a special type of keywords declared by

Query

Input
Interpretation

Input Analysis

External
Communication

Output
Processing

Output Display

4

apps. These keywords are likely to exist in proximity of
input values of interest in a query. A familiar example of
a critical word is a unit of measurement such as kg or lb.
Referring to instructions registered by the app, Nerddy
will extract values of interest in a query and store them
to variables that can be accessed in later stages.

Input Processing The stage where programmatic manipulation of
extracted data and queries is made possible. This is also
the stage where the app instructions must specify what
data should be made accessible in the next stages.

External Communication The stage where the query, attached files, extracted
variables, new variables, and necessary user data are
transferred to the end point/third party server
associated with the app. Applications may choose not to
return a response immediately and use the Notifications
API (Output) and Wallet API to make asynchronous
requests to send output or payment requests to the
user.

Output Processing This is the stage where all data made accessible in the
input processing stage and the response returned by the
third party application during the external
communication stage, if any, could be programmatically
processed in order to display the data on the user’s
front-end. This is a highly optional stage for apps that
use the external communication system and it’s
recommended that you use the Notification API directly.

Output Display This is the stage where output is displayed to the user.
Output will be cached on Nerddy’s servers to allow users
to save sessions and access saved and recently lost
sessions. You may disable session retrieval for your
results as discussed in the Notification API manual.

APIs that Apps Can Access

Notifications/Messages API Allows apps to send output, content, and normal
notifications to users. The system also allows apps to
reach new users through sidebar notifications.

Wallet API** Allows apps to send payment requests to users. The
system supports automatic (recurring) payments and
shipping options.

Profiles API* Allows apps to create app-specific profiles for users
which can be viewed by other users utilizing the
notifications system.

User Search API** Allows apps to search for users using specified criteria.

User Data API** Allows apps to access user data asynchronously.

5

Connections API* Allows apps to create connections between users to
allow for entity recognition.

PINs API Allows apps to store small values that could be accessed
by Nerddy’s front-end output display system. Typically
pins are used for user authentication such as when a
page that uses the GET method is iframed in the output.

*Requires granted permission to use the API.

**Requires granted permission to use the API and permission for each input parameter.

Building a Nerddy App
You don’t need a special account to build an app on Nerddy. Anyone can use dev commands

(which are discussed later in this manual) to submit an app to the platform.

Types of apps on Nerddy
• System apps: These are apps that are built into the platform such as the sign out app, web

search, search history, session retrieval app, etc.

• Dev apps: These are Nerddy-owned public apps that can be used by developers to submit,

retrieve and edit app files, access traffic stats and earnings, etc.

• Public apps: These are apps created and submitted by users and can be used by everyone.

They consist of two components:

Parent app: Represents a collection of child apps. At least one child app must be created

and defined under a parent app. Put simply, a parent app is access information shared by child

apps under it. The parent app ID must be registered before child apps.

Child apps: These are app instructions created and submitted by the parent app owner

and registered under parent apps. They don’t have a special global id or access key because

they use that of the parent app.

App Creation Checklist
1) Develop a web application on your server.

2) Read all the documentation manuals and create end-points for each Nerddy API you plan to

use.

You may use a public API offered by another party either directly on Nerddy or on your server.

However, your app will not be considered an official app for the third party content provider

but can still gain approval.

2) Purchase a parent app ID using dev commands and create a child app under the parent app.

3) Create a .nrd file for the child app. The .nrd file should contain app instructions as you will

learn later.

6

4) Submit the .nrd file. Review process could take anywhere from 48 hours to 5 days. Quite

often, app instructions are modified by reviewers for optimal performance.

5) You may request additional special permissions through the support system after an app is

approved. There is no guarantee that the requested permissions will be granted.

6) Create content for your app on Explore Apps page.

7) Advertise, maintain, and monetize your app.

Dev Commands
The table below lists dev commands that every developer should be aware of. You can enter

these commands on Nerddy just like you search for content.

dev: purchase a parent app id Returns a payment request with a physical
address being required. After payment is
complete, a parent (globalid) app ID will be
generated.

dev: create child app id under [globalID]

For example:
dev: create child app id under uf3lfgjf7fgvm

Registers a child ID (innerid) under a parent
app. Any app needs at least one innerid and
one globalid.

dev: my user id Returns your userid.

dev: my apps Returns list of parent and child app IDs
registered and the status of the associated
app submissions.

dev: view child apps under [globalID] Returns list of innerid(s) under a globalid.

dev: submit new app [globalID] [innerID]

Note: A .nrd file containing app instructions
must be attached. Please note that globalID
and innerID must be delimited by a space.

Submits the app for review. Please make sure
that all required app instructions are included
in the .nrd file. Not all instructions are
required.

dev: submit edit [globalID] [innerID]
[identity_verification_code]

Note: A .nrd file containing updated app
instructions must be attached.

Submits a new version of an existing approved
app for review. Please make sure to use the
same identity_verification_code you specified
in the original .nrd file for that app.

dev: download latest app file [globalID]
[innerID]

Exports the last approved and reviewer
modified .nrd file. Submitted .nrd files may be
edited in the review process. It’s important
that you build on the reviewed version for
future edits.

dev: get app auth info for [globalID] [innerID]
[identity_verification_code]

Returns parent appid, accesskey, and
vericode. This is important for API access.

7

dev: api access for [globalID] Returns API access privilege for the app.

dev: view app stats for [globalID] from [date]
to [date]

For example:
dev: view app stats for sjh74akms2w from Jan
15 till January 31

The stats dev app was built to be flexible with
natural language. You may word the dev query
as you wish. Another common way to word it:

dev: view app stats for [globalID] for
[fixedperiod]

Note: [fixedperiod] may be specified as today,
yesterday, or this month

Returns a zip archive that contains excel files
for each child app under the parent app and
an excel file for the parent app (AKA sum file).

The excel files contain date and time of access,
user IP address, userid, and sign up country.

Note that parent app stats only count unique
users for each day. If a user uses the app
multiple times on the same day or uses
multiple child apps of the same parent app,
only the first will be shown on the parent app
stats (the sum file). On the child app stats;
however, every request will be shown.

dev: view my wallet balance Returns the wallet balance for each parent
app that you own. Wallet balance doesn’t
include advertising rev share and only includes
unpaid earnings made from sales through the
Nerddy Wallet system.

dev: payment history Allows you to retrieve a list of payments made
to you.

dev: set payment method Allows you to specify payment method to
receive payout.

dev: set wallet action url for [globalID] as
https://www.example.com/abc.php

Allows you to set the endpoint where Nerddy
sends confirmations after successful payments
from users.

dev: set wallet subscription notify url for
[globalID] as https://www.example.com

This command will define the page where
Nerddy sends notifications for subscription
start, termination intent, and termination.

dev: set messages endpoint for [globalID] as
https://www.example.com/abc.php

Allows you to set the endpoint where Nerddy
sends messages from users. Refer to the
Messages API section in the
Notifications/Messages API manual.

dev: publish new article on app explore for
[globalID][innerID]

Note: A .txt file must be attached that
contains an HTML body of the content to be
published. It may not contain JavaScript or
PHP. On the first line, please specify article

Publishes new content on the app’s blog page
on Nerddy Explore. Submissions will only be
published after human review.

Article order specifies the position of the
article relative to other articles from the top.

8

order and article title in this format:

<articleorder>1</articleorder>
<articletitle>This is a Title</articletitle>
<htmlcontent>HTML Body</htmlcontent>

Please carefully proofread and review before
submission. If you want to delete or modify an
existing article, you will need to contact the
developer support.

dev: list dev commands Returns this list of dev commands.

dev: documentation Returns app development documentation.

dev: support Returns contact information for developer
support. Please contact the appropriate
department to avoid unnecessary delays.

These dev commands will be useable once the rev share program is open:

dev: view point value for [globalID] [month] Will return the value of each request made to
your app. Value of each request is determined
based on total advertising revenue and
algorithmic estimates of how much your app
contributed to the growth of the platform
over the period.

dev: view rev share earnings for [globalID]
from [date] to [date]

dev: view rev share earnings for [globalID] for
[fixedperiod]

Will return the rev share earnings for the app
for the specified period.

Components of a .nrd App File
Please download a sample .nrd app file from this page. We highly recommend that you view the .nrd file

side-by-side with this documentation using a text editor. Data format is JSON. Sections marked by * are

required and must be present in the .nrd file. Other sections are optional.

appid*
The appid section presents app identification. Make sure to register a parent appid and a child appid

first. The table below lists the elements of the appid section.

globalid Registered globalid (parent app ID).

innerid A child ID registered under the globalid.

userid Your userid (NOT your username or email). Use
the user id dev command to find it.

type Can be “new submission” or “update”

http://www.nerddy.com/beta/docs/samplenerddyapp.nrd

9

owner*
The owner section serves to verify your identity when you submit updated versions of the same app or

when you contact the developer support.

email Administrator e-mail.

identity_verification_code A passphrase that is required to access app auth
info and make future changes to the app.

contact Contact email or phone number that will be given
to end users who reach out for support for issues
related to your app.

parent If you are a company, specify company’s business
name. If not, specify “NULL”

about*
The about section describes your application.

title The title of your application. Visible to users in
attribution and Nerddy Explore.

description Describe briefly and accurately what your app
does.

category Describe your app category in two words or less.
Example categories: travel, messaging, calculator,
search, live video, photos, etc.

language State the language that your application can
interpret. Currently we only support English.

type Specify as “public”

minimum_age Specify the minimum age that your app is
targeting. Users below the minimum age will still
be able to use the app. However, the app won’t be
advertised to them.

user_location_requirement This feature is not available yet. Set to “All”

logo Logo of your application. Recommended width is
180px. Visible to users in attribution.

small_icon A 16 x 16 icon. Will be shown as favicon when user
is asked to select an app if more than one app can
handle the query.

show_attribution Specify “yes” to show an attribution box or “no”
for otherwise. An attribution box typically appears
on the top right of the page telling the user what
app handled the query.

attribution_links Specify the anchor texts and URLs in the format
shown on the sample .nrd file.

showonexplore Can be 1 or 0. If 1 is specified, the app will have a
blog on Nerddy Explore and will be advertised to
users. If 0 is specified, the app will be hidden from
Nerddy Explore’s index.

official Specify “yes” if you are the owner of the third
party APIs associated with the app. Specify “no” if

10

you are using public APIs to get the output.

permissions*
The permissions section allows you to request access to APIs that require system granted permissions to

access. Please note that you should only request access to APIs and parameters that you need. Your

whole app may be rejected if you request access to parameters you obviously don’t need for your app to

function.

wallet Request wallet permissions in this form:
"wallet": {"api":"allow","limit":"50",
"recurring":"allow"}

If your app needs access to the wallet API, specify
“allow” to the api parameter. The api parameter
can be set to either “allow” or “disallow”

Limit specifies the maximum amount your app can
request per transaction. If your app is subscription
based, you will need to request access to recurring
payments in the wallet system.

user_data_api Request User Data API permissions in this form:
"user_data_api": {"api": "allow",
"parameters":"userprofession, usercity, userzip"}

Refer to the User Data API manual for a list of
supported parameters. You must specify each
parameter you want access to.

user_search_api Request User Search API permissions in this form:
"user_search_api": {"api" : "allow", "limit":"8",
"criteria": "usersearchhistory, userschool,
userstate"}

Refer to the User Search API manual for a list of
supported criteria. Your app needs to obtain
permission to specific search criteria before you
can use the User Search API to search for users
using the criteria. The limit parameter specifies the
maximum number of users you can obtain in a
search result.

connections_api Request access to the Connections API in this
form:

"connections_api": "allow"

The connections_api parameter can be set to
either allow or disallow.

11

profiles_api Request access to the Profiles API in this form:

"profiles_api": "allow"

The profiles_api parameters can be set to either
allow or disallow.

messages_api Request access to the Messages API in this form:

"messages_api": "allow"

The messages_api parameters can be set to either
allow or disallow.

sessionlock
The session lock section specifies the endpoint and authentication information that should be sent along

with the query when the user is locked in a session with your app. A locked session or a continuous

session means that queries that the user enters once the session is created will be sent to your

application’s specified endpoint instead of being interpreted. A session is terminated when the user

enters “end” query. Your app must clearly state to the user in every response that they are in a session

with the app and to quit the session, they should enter “end” as a query. Failure to do so will result in

app suspension and possibly termination.

session_api Specify the end-point where the query, userid and
authentication information will be sent

session_auth Must be in JSON format as in the sample .nrd file
given. Whatever you specify here will be returned
under auth whenever a query is sent to your end-
point.

The session system will make a request to the end-point with this body format when a query is made by

a user who is in a session with your app:

{"auth":{"whateveryouspecified":"whatever", "whatever":"whatever"},

"body":{"sessionid":"xxxx","userid":"xxxx","userquery":"query entered by the user",

"File":"http://www.nrdcdn.com/example.zip, http://www.nrdcdn.com/example2.zip",

"FileName":"my_music, cat"}}

If the query contains attached files, the system will send direct download URLs to each attached file in

zip format with a random filename. If multiple files are uploaded, the URLs will be comma delimited.

Original filenames will be given under FileName (also comma delimited). Sessionid, userid, and

userquery will always be provided. Sessionid is different from usersessionid. Usersessionid is different

for each tab. Sessionid is not as it represents a session with your app.

12

interpretation*
Interpretation provides criteria required to be met by queries that should be passed to the app.

The table below lists the elements of an input interpretation record. You may create multiple

records under interpretation. The first record should be "1":{}, second should be "2":{}, etc.

main_substring A substring that must always exist in a query.
Can be more than one word. May be left
empty.

word_count_condition Can be "less" or "greater" or "equal"

word_count Specify the word count that the query must
meet based on the word count condition. If
query can be of any length use word_count of
0 and specify word_count_condition as
greater.

required_keywords Specify sets of keywords that may exist in a
query. A set represents a keyword and its
synonyms. You may specify more than one set
as in the sample .nrd file. If one keyword in a
set exists in the query, the set will be satisfied.
A keyword may be made of more than a single
word and may contain characters like colon.
Keywords can be substrings. Substring
keywords must be surrounded by square
brackets as in [meter] where meter is the
substring keyword.

rkp Ratio of sets that MUST be satisfied in a query
to the total number of sets in the
required_keywords multiplied by a hundred.

may_exist_keywords Specify keywords that may exist in a query.
These keywords don’t count in the
denominator of the rkp equation. However, if
one exists, mkp will be added to the calculated
rkp.

mkp Specify the value of mkp that should be added
to the rkp if a may_exist_keyword is present in
the query.

required_mentions Specify a single type of entity that must exist
in the query. Note that not all entity types that
are supported in input analysis are supported
in required_mentions. Required_mentions
serves as an additional interpretation layer
and can be set to:

13

• none
The query doesn’t have to contain any special
entity type.

• number
The query must contain a number.

• connection(specifyrelation) or
connection(ALL)
The query must contain the name of a person
that the user might know. Refer to the
Connections API manual.

Note that connection will also recognize the
user connections mentioned in the query and
will store them under
#!Interpret_Connections!# variable. Different
users will be separated by commas. If two
connections have the same name as one
mentioned in the query, Nerddy will return
both between parentheses.

• username
The username of another Nerddy user. The
userid(s) associated with usernames detected
in the query will be stored under
#!usermentionids!# variable while the original
usernames will be stored under
#!usermentions!# separated by commas.

• useremail
The email associated with the account of
another Nerddy user. The userid(s) associated
with useremails detected in the query will be
stored under #!usermentionids!# variable
while the emails will be stored under
#!usermentions!# separated by commas.
• url
The query must contain a URL.

• phone
The query must contain a phone number.

14

restricted_words Specify words that must not exist in the query.
Words must be comma delimited. For
substrings, surround the substring with square
brackets.

create_session Can be “yes” or “no”. If yes is specified, the
user will be put in a continuous session with
your app. Queries entered by the user will be
sent to the session_api endpoint specified
under sessionlock.

session_length Limit the length of the session to a number of
queries. Must be an integer.

file Can be “yes” or “no” or “maybe”. If yes is
specified, this means that your app is always
expecting a file to be attached to the query. If
no is specified, the query may not contain
attached files. If maybe is specified, the query
may or may not contain attached files.

file_type Limit the attached file support to certain
extensions. Must be comma delimited. Don’t
put a period before the extension.

disallowed_file_types Disallow certain file types that your app
doesn’t process. Similar to file_type, it must
be comma delimited.

analysis
The table below lists the elements of a critical word based input analysis record. Similar to

interpretation, one app may have multiple records. Records are order sensitive. If more than one record

uses the same variable name, the new record associated value will overwrite the older one. If your app

uses multiple critical words, you will need to create multiple records. Each critical word should have a

unique cwid.

cwid A 6 or more digit unique integer that identifies the
critical word. This is necessary to be able to make
changes to the record.

cw_type Can only be 1 or 2. Use 1 if the critical word is one
word and has a fixed position in the query. Use 2 if
the critical word can appear anywhere in the query
or if the critical word is made of multiple words. In
other words, cw_type = 1 means that the critical
word is a position sensitive word.

cw_position Always specify 0 if you set cw_type to 2.

If cw_type is 1, cw_position is the required order
of the critical word in the query. Specify 0 if the

15

critical word will always be the last word in the
query. Specify the order otherwise as an integer.
For instance, if the specified critical word should
always be the second word in the query, specify 2.
If the critical word doesn’t exist in that position
and exists elsewhere in the query, it will not be
recognized.

Observe the queries below. Suppose you are
building an app to help users download movies
you have the rights to share. There are many ways
the query that your users make could be worded.
You want them all to be analyzed by your app.

1) download fingerman the movie
2) fingerman the movie download
3) I want to download fingerman the movie

In the examples above, the developer should
account for the various ways the input could be
put. Assume “download” is the critical word and
“fingerman the movie” is the input we are trying
to extract. We don’t know how the user will word
the query. Notice that the input location is not
always fixed relative to the critical word. The way
this analysis could be handled on Nerddy is:
• Create three input analysis records for
download. The first record should be position
insensitive. The second and third records should
be position sensitive. Specify cw_position = 1 for
the second record and cw_position = 0 for the
third record or the vice versa.
• The input analysis system is record order
sensitive if you specify the same variable_name
and the same critical_word for different records.
The order in which you specify the records is
important. In the example above, the position-
sensitive critical word input will override the
position-insensitive one allowing your app to get
the correct input.

If the useful input will always appear in a fixed
position relative to a critical word that could
appear anywhere in the query, you don’t need to
worry about this. Set cw_position to 0 and
cw_type to 2.

variable_name Specify the name of the parameter that will hold

16

the extracted input data associated with the
defined critical word.

critical_word Specify the critical word. Can be a one word as in
“download” or a combination as in “rent in” and
“view:”

alternative Specify synonyms to the critical word. Must be
comma delimited.

must_exist Can be 0 or 1. If set to 0, interpretation will not fail
if the critical word doesn’t exist in the query. If set
to 1, interpretation will fail if the critical word
doesn’t exist in the query.

mention_number If the critical word could appear multiple times in
the query, which one should be the critical word?
If you are not sure, set this to 1 (first mention)

-1: strictly last mention – i.e. the cw must appear
multiple times in the query and it should always be
the last one.
0: last mention – i.e. the cw may appear multiple
times in the query. If it does, the one farthest from
the first word will be the critical word.
1: first mention – i.e. the cw may appear multiple
times in the query. If it does, the first mention of
the critical word in the query is the critical word.
2: second mention – i.e the critical word must
appear at least twice in the query and the critical
word is always the second mention.
n: nth mention.

input_type Supported Input Types:

"word" : Only one word

"more than one word" : One or more words from
critical word to second_limit

"number" : Integer or float. Nerddy also recognizes
written numbers from one to ten and converts
them to INT when stored in a variable that carries
a number.

"array of numbers" : Comma-delimited numbers.
For example, convert 18.2, 121, 189 cm to m.

"location" : If input type is location, Nerddy will
recognize addresses and cities and store them in
the defined variable in this format:
Street: 300, Route: West Bellows Street, Town: Mount

17

Pleasant, City: Isabella County, State: Michigan, Country:
United States, Postal Code: 48858

"date" : If input type is date, Nerddy will recognize
dates and return them in this format:
Day: 12 Month: 2 Year: 2017

"url": Recognizes one or more URLs. The URLs will
be stored in comma-delimited format.
"phone": Recognizes North American phone
numbers put in any format such as 0123456789 or
012 345 6789.

"email": Recognizes one or more email addresses.
The emails will be returned in comma-delimited
format.

"connection (relation) ": Recognizes entities of
type [relation] who were connected to the user
through the Connections API by the app or by
other apps (public connections only). The userids
of the entities will be stored under the associated
variable. If more than one connection has the
same name mentioned in the query, Nerddy will
return the userid of all of them between
parentheses. You should then ask the user which
user exactly they meant.

"username": Recognizes usernames. The userids of
the recognized usernames will be stored under the
associated variable (comma-separated).

“useremail”: Recognizes e-mails of registered
users. The userids of the recognized usernames
will be stored under the associated variable
(comma-separated).

input_location Specify the position of the useful input you are
trying to extract with respect to the critical word.
This parameter can be set to either "before" or
"after"

Before: the input will always exist right before the
critical word.
After: the input will always exist right after the
critical word.

Exception: For input_type = number and
input_type = url, input_location specifies the

18

location relative to the critical word but doesn’t
mean the input will be right after or before the
critical word.

input_limit_type Input limits are useful for "more than one word"
input type. It can be set to either "none" or "word"
or "count"

If set to none, this means that the input is
expected to be unbounded in the query. If set to
word, this means that the input can exist only from
the critical word up to a defined word that should
always exist in the query referred to as
second_limit. If set to count, this means that the
system will read count words after or before the
critical word as the input.

limit_count Set to 0 if input_limit_type is anything other than
count. Set to the number of words you wish to
take as input if input_limit_type is count.

second_limit Set to 0 if input_limit_type is anything other than
word. If input_limit_type is word, set second_limit
to the word you use as the second limit. You may
specify synonyms to the word. Synonyms must be
comma delimited. The second_limit word will not
be part of the input.

second_limit_mention Can be 0 or 1 or 2. Set to 0 if input_limit_type is
not word. If input_limit_type is word, specify
which mention of the second_limit should be
considered the second_limit if the second_limit
word exist twice in the query. If set to 1, the first
mention of the word in the query will be the
second_limit.

ignore_word_list Specify a list of comma-delimited words that may
exist after the critical word that should be
removed from the beginning of the input.

no_mention Specify a list of comma-delimited words that must
not exist in the query. If one of the specified words
exists in the query, the system will not do analysis
for the critical word and will proceed to the next
critical word.

connection_distance Valid for input_type = connection (relation) and
input_type = number. Set as 0 for otherwise. The
connection_distance is an integer that limits how
far from the critical word the system should look
for numerical input or human entities.

19

input-processing*
The table below lists the components and allowed statements in input processing.

variable_declaration{} Use variable declaration to define new variables that were not
defined in the input analysis stage and are not system reserved.
Below is a list of possible variable declaration statements. Variable
declaration statements don’t end with a semicolon. Variable
declaration statements must be inside variable_declaration{}

#!variablename!# Simply mention the variables.
Each variable should be listed
on a new line.

#!variablename!# = value You may assign values to
variables. No semicolon
needed. Values can be numbers
or sentences

query_operations{} Use query operations to search the query for the existence of certain
words or substrings. The system supports AND and OR operators.
Variable assignments under query_operations{} must end with
semicolon.

Example statements:
If [pet] OR [dog] OR "cat" exists then{#!pets!#=1;}
If "one night" AND "free" exist then [#!specialoffer!#=1;}
If "two nights" AND "free" exist then {#!specialoffer!#=2;}

[] specifies a substring
"" specifies whole words

variable_operations{} Variable_operations carries out operations based on input analysis
variables and newly defined variables rather than the whole query.

Example statements:
if #!operation!#==1 then{#!measure_in_m[]!#=#!length[]!#/100;
#!measure_in_mm[]!#=#!length[]!#*10;
#!measure_in_cm[]!#=#!length[]!#;}

In the above example, the input type is array of numbers. Arrays must
contain empty square brackets before the last exclamation mark in
the variable name. The example above is from a unit conversion app
where length is given in cm. For example: convert 19, 132.12, 181 cm
to m

More Examples:

20

If #!weekstodays!#==1 then{ #!days!#=#!weeks!#*7;}
#!newwidth!# = 2*sqrt(#!width!# * 5);
#!viz!#=Click here;

A more complex example:
if #!p!# <= #!w!#*#!cat!# or #!t!# >= 1 then{
 if #!x!# != 0 then{
 #!res!# = thickness is #!t!# centimeter;
 #!z!#=#!x!#/1000;
 }
 #!y!# = #!w!#*#!l!#;
 if "m" == units(#!t!#) then{#!y!# = #!y!# meters;}
}

units (#!variablename!#) returns the word after the value associated
with the variable in the query. Only one level of nesting is supported.
For loops are not supported in the input processing stage. You can
handle more advanced processing on your own server. The input
processing stage only provides support to basic statements that are
common in query NLP.

return{} This is the only part of input processing that is not optional and is
required for all apps. You must list the variables you are interested in
transferring to the next stages under return{} delimited by a
semicolon.

Example:
return{
#!orderquantity!#;
#!apples!#;
#!userquery!#;
#!userqueryid!#;
#!usersessionid!#;
#!userid!#;
#!userpin!#;
#!usersubid1!#;
#!usersubid2!#;
#!userfullname!#
#!File[]!#;
#!FileName[]!#;
if #!operation!#==1 then{#!mpa!#;}
if #!operation!#==2 then{#!ksi!#; #!system!#;}}

Please refer to the User Data API for a full list of supported user
variables that are associated with account data. #!userid!#,
#!userquery!#, and all variables that start with “user” are system
reserved.

Important system reserved variables:

21

#!userid!# : returns the user ID.
#!userquery!#: returns the query made by the user.
#!userqueryid!# : returns the value associated with the ID of the
query made by the user.
#!usersessionid!# : returns the value associated with the ID of the
session where the query was made.
#!userpin!#: returns the user pin stored by your app for the user
using the PINs API.
#!usersubid1!#: returns the value for under the usersubid1 stored for
the user by your app through the PINs API.
#!File[]!# : returns URLs to access the files attached by the user. The
URLs are comma-delmited.
#!FileName[]!#: returns the original file names associated with the
files.
#!usermentions!#: returns userid(s) of users mentioned by username
or email. See Interpretation section for more details.
#!usermentionids!#: returns usernames or useremails of existing
users mentioned in the query. See Interpretation section for more
details.
#!Interpret_Connections!#: returns userid(s) of people that the
person making the query may know and may have mentioned in the
query. See Interpretation section for more details.

In the previous example #!orderquantity!#, #!apples!#, #!mpa!#,
#!ksi!#, and #!system!# are not system reserved variables. They are
either variables defined in the input analysis stage or new variables
created in the input processing stage.

You may make if statements under return. If the statements are true,
the system will return the variables under the condition.

api
There are two possible options: request-and-read, and request-only. The first supports REST and

Querystring APIs and reads the output. The request-only option only sends the data to an end-point via

POST and doesn’t read the output.

request-and-read
api_base_url The endpoint associated with the API

api_server_auth Can be 0 or 1.

api_key_name Specify the name of the key for authentication.

api_key_value Specify the value of the key.

api_param_separator Can be REST or QueryString.

api_parameters List the parameters in the format below and define
the default value for each parameter. Parameter
name must match exactly the variable_name if you

22

are reading data returned from the input
processing stage.

[{"action": "word-
pronunciations","someparametername":"default
value","word":"default word","language":"en",
"userid": "0"}]

You may define new parameters under the
api_parameters. In the above example, the
“language” parameter may or may not be a
variable passed from input processing.

api_return_type Can be xml or JSON.

return_key_hierarchy Enter the hierarchy from parent to desired node
separated by >
For example:
results>0>geometry>location

return_attributes Specify the attributes that will be returned by the
third party API. Must be comma-delimited. For
example: Title, Description, Url.

request-only
apiURL Specify the API end-point.

json_data This is the payload that will be sent to your endpoint. Make sure it
contains authentication information so you can verify that it’s
coming from Nerddy. The formats of api_parameters of request-
and-read and json_data of request-only are very different and can
be confusing.
In json_data, you specify the name of the parameter and then you
may assign a static value or load a value from a parameter passed
from input processing under it. Carefully observe the example
below:
{"appid":"xxxx", "authkey":"xxxx", "user":"#!userid!#",
"fileurls":"#!File[]!#",
"firstfilename":"#!FileName[1]!#","userqueryid":"#!userqueryid!#",
"usersessionid":"#!usersessionid!#"}

Data contained under the variables will be returned in place of the
variables #!variablename!#

output-processing
The purpose of the output processing system is to process the data read by the system in API

communication stage or input processing stage. This is an optional stage. Your app can use the

Notification API to send asynchronous output to the user instead of returning output in the API

communication stage.

A few things you should know:

23

• Output processing instructions must start with <output_processing> and end with
</output_processing>.
• Output processing instructions must contain <output_display> </output_display> tags inside the

<output_processing> tags.

• Output processing instructions may contain CSS in the beginning before the <output_display> tags and

after the <output_processing> opening tag. CSS must be put under <css></css> tags. For example:

<css>

coolcat {

 background-color: linen;

}

</css>

• Use proper syntax as directed above; otherwise, the app instructions will not be parsed properly. The

tags may seem unnecessary and excessive. However, they serve a purpose on our parsing side.

• The output display system supports if statements. For example:

if #!result[1][name]!# != NULL then{

display(!

<div class="clear2"></div>

Top Search Result: #!result[1][name]!#

<div class="clear1"></div>

!)}

• The most important function in the output display system is the display(! whatever !) function/block.

Multiple display functions can be included under the output_display tags. Display functions can be

included under if conditions. Display functions may contain for loops. Display statements should not be

followed by a semicolon.

• You can print variables directly inside the display function by simply mentioning the variables.

For example: display(! Your age is #!age!# and your height is #!height!#cm !)

If #!age!# holds 7 and #!height!# holds 183, the system will return: Your age is 7 and your height is

183cm

• You may include HTML under the display function

• You may include Nerddy Mark-up for notifications under the display functions. Please refer to the

Notifications API manual for more information of the mark-up. General rule: the output display system

24

relies on the notification system. Whatever is allowed in the notification system is allowed in the output-

processing display system.

• If the variable value contains spaces or special characters, sometimes it may be necessary to use ^enc

as in #!variablename^enc!# to print the value of the variable with the special characters encoded. This

is useful if you are printing variables to a URL to display some result in an iframe.

• Data received in the API communication stage is stored under #!result[order][attribute_name]!#

• For pagination, the system relies on the Notification API’s pagination system. Therefore, if you wish to

display content in different pages to the user, you must use the <page[j]></page[j]> tags.

display(!

<page[1]>This is page 1</page[1]>

<page[2]>This is page 2</page[2]>

!)

In the above example, the user will see “This is page 1” on the first page and “This is page 2” on the

second page of the output.

• For loops in output display serve a limited purpose and that is to print

#!result[order][attribute_name]!# arrays. They don’t support nesting and can’t contain variables from

input processing. No more than one loop can be included inside one display block. For loops always

follow this form: for (i=x, i<=y, i++). The middle operator can only be <= or < and the last part must be

increasing (i.e. variable++).

• For loops can contain HTML and Nerddy Mark-up

• For pagination, please observe the following example carefully:

25

display(!

for (j=1, j<=n/3, j++){

<page[j]>

for(i){

<div class="clear2"></div>

<NNB[i]>#!result[i][title]!#</NNB[i]>

<div class="clear1"></div>

Url: #!result[i][url]!#

<div class="clear2"></div>

<hr>

}

for(i){

<NerddyNewBox[i]><center><iframe src="#!result[i][url]!#" width="900"

height="600"></iframe></center></NerddyNewBox[i]>

}

</page[j]>

}

!)

In the above example, the developer wants to return web search results and uses Nerddy Markup so

that when the user clicks on the website title, the webpage loads up in an iframe in a new box. The

developer wants to return 3 results per page and doesn’t know exactly how many results will be

returned by the API and stored under the results array. Notice carefully the for(i) loop and the middle

part of the main loop. The for(i) loop can be loaded inside normal for loops. In the middle part of the

main loop, j<=n/3, n is the number of records in the result[order][attribute_name]. This means there will

be as many pages as the number of records divided by 3 and rounded up. You can set it to any number

and not necessarily 3. The for(i) loop automatically connect s to the main loop. Three new results will be

printed each time the for(i) loop is called.

• JavaScript is not allowed

26

Interpretation and Analysis Examples

27

Special Guidelines and Tips

• Don’t show your logo on the top left of the output; this is way too old fashioned. Use the attribution

system for branding. Minimize the graphics in the output.

• Apps that use the wallet system must use the attribution system and offer customer support and

terms pages.

• For more complex apps, it’s recommended that you use the POST API system to get the input and

information you need and then you can send the output to the user asynchronously through the

Notification API.

• You must develop a solid understanding of Nerddy’s interpretation and analysis systems to be able to

build robust apps. Think of different ways users could word queries that they intend to reach your app.

• Don’t hesitate to contact the developer support if you have a product but unable to develop a Nerddy

app for it.

• Nerddy Explore page should contain instructions to users such as queries supported by your app. Don’t

create a Nerddy Explore page for each child app. Only create one page for the parent app.

• Use sidebar notifications to advertise your app to target audience.

• Advertise your Nerddy Explore page on social media. Use GIFs on Nerddy Explore articles to show

users quickly how to reach your app.

